If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4f^2+18f-10=0
a = 4; b = 18; c = -10;
Δ = b2-4ac
Δ = 182-4·4·(-10)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-22}{2*4}=\frac{-40}{8} =-5 $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+22}{2*4}=\frac{4}{8} =1/2 $
| 41z2–14z=0 | | 71=7x+x+7 | | -2k-10=4K+8 | | -(5x-7)=-3x-39 | | a-17=22 | | 5+5m=m+9 | | 3x-7=-42 | | -(8m+1)=-2m-25 | | a-23=-4 | | 7w+2-5w=3w-6 | | -27=p-5 | | P+5p=18 | | 7x-22=1/3(9x+6) | | 5r+34=6(3r-3) | | 5r=34=6(3r-3) | | 73÷18=-2÷3n+3÷2 | | 3m-12=-5(2m+5) | | R-5=2r | | -23+x=5x+53 | | 5a+3a+4a=180 | | 6(n-4)+1=2n-35 | | 8z-12=7 | | 0.7x-0.8=8.3 | | 5/7×d=15 | | -1g(2g-6)=18 | | 1/2/65=4.5/x | | p/2-4=18 | | -4x-98=6x+72 | | 15-3/3=n | | 7p-40=-8(p+7)+7p | | 8x×9×-2x=59+1 | | 3x-2=x+3-6x |